

бакор

КЕРАМИЧЕСКИЙ ДИСКОВЫ<mark>Й ФИЛЬТР</mark>

ДЛЯ ОБЕЗВОЖИВАНИЯ КОНЦЕНТРАТОВ

С ВЫСОКОЭФФЕКТИВНЫМИ КЕРАМИЧЕСКИМИ ФИЛЬТРУЮЩИМИ ЭЛЕМЕНТАМИ

> НИЗКАЯ ВЛАЖНОСТЬ КЕКА ВЫСОКАЯ ПРОИЗВОДИТЕЛЬНОСТЬ НИЗКОЕ ЭНЕРГОПОТРЕБЛЕНИЕ НЕПРЕРЫВНОЕ ДЕЙСТВИЕ ВЫСОКАЯ НАДЕЖНОСТЬ И АДАПТИВНОСТЬ ЧИСТЫЙ ФИЛЬТРАТ НИЗКИЕ ЭКСПЛУАТАЦИОННЫЕ ЗАТРАТЫ

- Развитие технологий производства керамических фильтрующих элементов
- Совершенствование конструкций фильтров и технологий фильтрации
- Предложение наиболее высококлассных продуктов, услуг и передовых технологий

О БАКОР

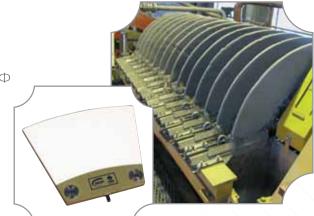
Группа Компаний Бакор, на базе Научно-технического центра "Бакор", созданного более 25 лет назад, занимает ведущее место в России по исследованиям, разработкам инновационных технологий и производству уникальной специальной фильтрующей и огнеупорной керамической продукции, применяемой на промышленных предприятиях России и за рубежом.

Серьезная научная и экспериментальная база центра и высокопрофессиональный коллектив позволяют эффективно, в сжатые сроки разрабатывать и внедрять в производство инновационную конкурентоспособную продукцию.

Современный производственный комплекс, оснащенный высокотехнологичным оборудованием обеспечивает надежное и качественное выполнение самых сложных заказов наших потребителей полного инновационного технологического цикла: от формулирования идеи и её реализации в научном подразделении, до выпуска готовой продукции.

ИННОВАЦИОННЫЕ РЕШЕНИЯ БАКОР

Являясь ведущей организацией в области разработок керамической продукции, более 11 лет «НТЦ «Бакор» занимается проблемой создания фильтрующих элементов из керамики, имеющих высокие и надежные эксплуатационные характеристики.


Основной специализацией в производстве фильтров из керамики является разработка и изготовление фильтров для разделения жидких и твердых сред.

На сегодняшний день разработаны и производятся фильтрующие элементы из пористой проницаемой керамики, которые обладают рядом ценных, неоспоримых преимуществ перед фильтрующими элементами из других материалов:

- устойчивость к воздействию высоких температур;
- высокая механическая стойкость;
- стойкость к микробиологическому воздействию без применения дорогостоящих промывных реактивов при фильтрации биологических и пищевых сред;
- устойчивость в агрессивных средах;
- высокая способность к регенерации.

На их основе производится современное высокопроизводительное фильтровальное оборудование.

ФИЛЬТРАЦИОННОЕ ОБОРУДОВАНИЕ БАКОР

■ ВАКУУМНЫЕ ДИСКОВЫЕ ФИЛЬТРЫ КДФ

• ПАТРОННЫЕ КЕРАМИЧЕСКИЕ ФИЛЬТРЫ ПКФ

Использование вакуумных дисковых фильтров КДФ с керамическими фильтрующими элементами Бакор является наиболее оптимальным решением при обезвоживании суспензий с высокой концентрацией твердых веществ (от 15 до 70%), когда требуется получение сухого кека при минимальных эксплуатационных затратах, и высокая производительность за счет большой площади фильтрации. Данный тип фильтра является наиболее оптимальным при ограниченных производственных площадях.

ОТРАСЛИ И ОБЛАСТИ ПРИМЕНЕНИЯ

 ■ ГОРНО-ОБОГАТИТЕЛЬНАЯ ПРОМЫШЛЕННОСТЬ И МЕТАЛЛУРГИЯ: фильтрация концентратов фильтрация шламов и хвостов

■ ПРОИЗВОДСТВО ГЛИНОЗЕМА: фильтрация концентратов

• ОТРАСЛИ ЛЕГКОЙ И ТЯЖЕЛОЙ ПРОМЫШЛЕННОСТИ (ХИМИЧЕСКАЯ, ПИЩЕВАЯ, КОММУНАЛЬНОЕ ХОЗЯЙСТВО):

организация локальных систем замкнутых водооборотов

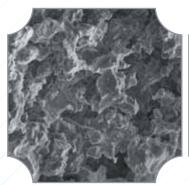
РЕЗУЛЬТАТЫ ОБЕЗВОЖИВАНИЯ КОНЦЕНТРАТОВ

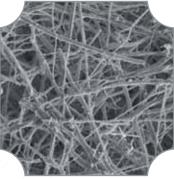
Концентрат	Влажность, %	Удельная производительность, кг/м² в час
Медный концентрат	7.0-8.5	800-1500*
Цинковый концентрат	6.0-9.0	700-950
Свинцовый концентрат	4.0-7.0	800-3500
Окисленный свинцово-серебряный	10.0-12.0	400
Окисленный свинцово-золотой	10.0-12.0	400
Пиритный концентрат	7.0-9.0	800-1100
Флюоритовый концентрат	12.0-18.0	800-1500
Гидроксид алюминия	5.3-10.5	1450-3500
Хромовый концентрат	6.0-8.0	1100-1500
Железорудный концентрат	7.5-8.5	900-3500
Апатитовый концентрат	5.8-7.7	600-1100
Цирконовый концентрат	5.85-7.2	600-670
Рутиловый концентрат	5.16-7.7	600-700
Ильменитовый концентрат	7.8-8.2	600-800
Каолин	20.0	400-600
Уголь	9.5-13	300-800
Молибденовый концентрат	8.0	900-1000
Бентонитовый концентрат	2.0-4.0	600
Кварцевые пески	4.0-6.0	1100-1500

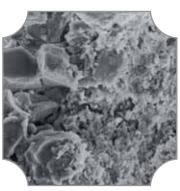
На основе фильтров КДФ Бакор предлагает инновационные решения, продукты и услуги для энергоэффективного и высокопроизводительного обезвоживания концентратов и фильтрации суспензий:

- проектов исследования задач и проектов клиентов
- проектирование технологических процессов фильтрации
- празработки наиболее приемлемых продуктов для решения задач клиентов
- практические испытания, подтверждающие качество нашей продукции
- производство и поставка фильтровального оборудования
- постоянное сервисное обслуживание
- дальнейшее усовершенствование продукции для клиента
- ремонт и снижение эксплуатационных затрат владельцев керамических фильтров, посредством их переоснащения фильтрующими элементами Бакор.

СОЗДАВАЯ ПРЕИМУЩЕСТВА: НАНОТЕХНОЛОГИИ В ОСНОВЕ СОЗДАНИЯ ИННОВАЦИОННЫХ КЕРАМИЧЕСКИХ ЭЛЕМЕНТОВ БАКОР






Вакуумный Дисковый Фильтр КДФ оснащен дисками, каждый из которых укомплектован 12-ю керамическими фильтровальными пластинами секторной формы (фильтрующих элементов). Обезвоживание концентратов (пульп) керамическими фильтрующими элементами происходит благодаря действию капиллярных сил.

Производство керамических элементов Научно-техническим центром Бакор основано на многолетних исследованиях и разработках керамических материалов и продуктов, с использованием новейших нанотехнологий.

Научные подходы и Hoy-хау Бакор позволили разработать принципиально новые керамические фильтрующие элементы, с оригинальными конструкциями и мембранными покрытиями, которые обеспечивают наиболее эффективные и востребованные эксплуатационные характеристики.

ПРЕИМУЩЕСТВА КЕРАМИЧЕСКИХ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ БАКОР

- ОРИГИНАЛЬНАЯ КОНСТРУКЦИЯ
- ПОДБОР РАЗМЕРОВ ПОР МЕМБРАННОГО ПОКРЫТИЯ
- ИНДИВИДУАЛЬНЫЙ ПОДБОР САМЫХ ЭФФЕКТИВНЫХ ФОРМ И СОСТАВОВ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА
- ВЫСОКАЯ МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ
- ВЫСОКАЯ ИЗНОСОСТОЙКОСТЬ
- ВЫСОКАЯ ТЕРМОСТОЙКОСТЬ
- ВЫСОКАЯ СТОЙКОСТЬ В АГРЕССИВНЫХ СРЕДАХ

- обеспечивают высокую производительность и чистоту фильтрата
- минимизируют влажность кека
- оптимизируют все параметры фильтрации
- обеспечивают бесперебойную работу
- длительный срок службы
- значительно снижают расходы на эксплуатационное обслуживание

ТИПОРАЗМЕРНЫЙ РЯД

Тип	Площадь фильтрации
Секбор-0,03	0,03
Секбор-0,04	0,04
Секбор-0,25	0,25
Секбор-0,42	0,12
Секбор-0,7	0,7

ФИЗИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Показатели	Ед. изм.	Значение
Открытая пористость	%	40 - 45
Диаметр пор	MKM	1-10
Предел прочности при сжатии, не менее	МПа	30.0
Конструкционная прочность на изгиб, не менее	кН	19.0
Кислотостойкость, не менее	%	97.0
Щёлочестойкость, не менее	%	92.0

ПРИОРИТЕТЫ БАКОР:

- Развитие технологий фильтрации и производства керамических фильтрующих элементов
- Совершенствование конструкций фильтров и технологий фильтрации
- Предложение наиболее высококлассных продуктов, услуг и передовых технологий

ПРЕИМУЩЕСТВА ФИЛЬТРОВ КДФ

ВЫСОКАЯ УДЕЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ

- В 1,5-5 раз выше, чем у аналогичных вакуумных и пресс-фильтров
- Большая фильтруемая поверхность на единицу занимаемой площади

НИЗКАЯ ВЛАЖНОСТЬ КЕКА

■ Средняя влажность концентратов составляет 7-8 %

ЭКОНОМИЯ ЭНЕРГОРЕСУРСОВ

- Энергопотребление ниже в 10-20 раз, по сравнению с вакуумными тканевыми и пресс-фильтрами
- Возможность исключения операции сушки концентрата
- Минимизация вложений на расходные материалы, вспомогательное оборудование
- Отсутствие отдувки кека

СНИЖЕНИЕ ЭКСПЛУАТАЦИОННЫХ ЗАТРАТ

- Сокращение затрат на замену фильтрующих элементов
- Отсутствие абразивного износа деталей в системе отвода фильтрата
- Минимальные потребности в операционном и техническом обслуживании
- Высокая коррозионная стойкость конструкции фильтра

НЕПРЕРЫВНОСТЬ ДЕЙСТВИЯ

- Снижение затрат на конвейерное оборудование
- Высокая эксплуатационная готовность фильтра 98%
- Высокая производительность фильтрующей площади

КЕРАМИЧЕСКИЕ ФИЛЬТРУЮЩИЕ ЭЛЕМЕНТЫ

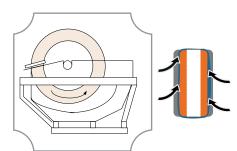
- Постоянное совершенствование конструкций
- Длительный срок службы, достигающий 36 месяцев
- Разнообразие модификаций
- Высокая прочность и термостойкость
- Высокая стойкость к абразивному износу
- Наиболее эффективные формы мембранных покрытий
- Высокая открытая пористость до 45%
- Максимальная гидравлическая пропускная способность, благодаря возможности регулировать размеры пор

ЧИСТОТА ФИЛЬТРАТА И ЭКОНОМИЯ СЫРЬЯ

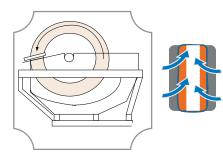
- Фильтрация без потерь тонкоизмельченных концентратов с содержанием класса 0,040 мм до 99%.
- Высокая чистота фильтрата содержание твердого в фильтрате 0,001-0,005 г/л
- Использование фильтрата в замкнутом водообороте и сокращение потребления воды на 30-50%
- Снижение потребления полимерных флокулянтов в сгустителях

ЭКОЛОГИЧЕСКИЕ ПРЕИМУЩЕСТВА

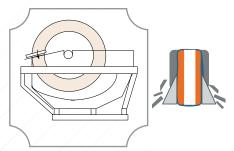
- Исключены аэрозольные выбросы в рабочей зоне фильтра в связи с отсутствием операции отдувки кека
- Чистый фильтрат, не загрязняющий производство и окружающую среду.


ОПЕРАЦИОННЫЕ ПРЕИМУЩЕСТВА

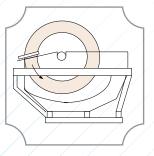
- Значительное сокращение эксплуатационных расходов
- Простая в сборке и обслуживании конструкция
- Непрерывная работа и автоматизация работы.


ПРИНЦИП ДЕЙСТВИЯ ФИЛЬТРОВ КДФ

Работа фильтра основана на четырех фазах, контролируемых системой автоматики:


■ ОБРАЗОВАНИЕ КЕКА

Когда микропористые пластины входят в пульпу, на них немедленно оказывают действие капиллярные силы. Вакуум-насос создает вакуум, который всасывает жидкость через диски в линию фильтрата. С внешней стороны керамических фильтрующих элементов начинается быстрое образование кека, при этом, ни твердые частицы, ни воздух сквозь поры не проходят, что сокращает потребление электроэнергии на поддержание вакуума.


■ ОБЕЗВОЖИВАНИЕ КЕКА

При вращении дисков с фильтрующими элементами, действие капиллярных сил продолжается непрерывно по всей поверхности до тех пор, пока из твердого не будет удалена вся свободная жидкость. Высокоэффективный процесс обезвоживания обеспечивает минимальную влажность кека и минимальные эксплуатационные затраты всего процесса обезвоживания.

■ PA3ГРУЗКА KEKA

Керамические ножи эффективно удаляют обезвоженный кек с керамических фильтрующих элементов, оставляя тонкий слой твердых частиц (подложку) на поверхности. Этот слой работает как защита против механического абразивного воздействия, снижая затраты на техобслуживание и увеличивая срок службы керамических фильтров.

• ОБРАТНАЯ ПРОМЫВКА (РЕГЕНЕРАЦИЯ) ФИЛЬТРУЮЩИХ ПЛАСТИН

Для промывки фильтрующих элементов, удаления оставшегося кека и очистки микропористой структуры подается водопроводная вода или фильтрат. Обратная промывка обеспечивает исключительную эффективность фильтрации и долгий безаварийный срок службы. При каждом обороте барабана, система обратной промывки подает небольшую порцию воды в фильтровальные пластины, полностью исключая попадание воды в зону сушки кека. Давление контролируется автоматически.

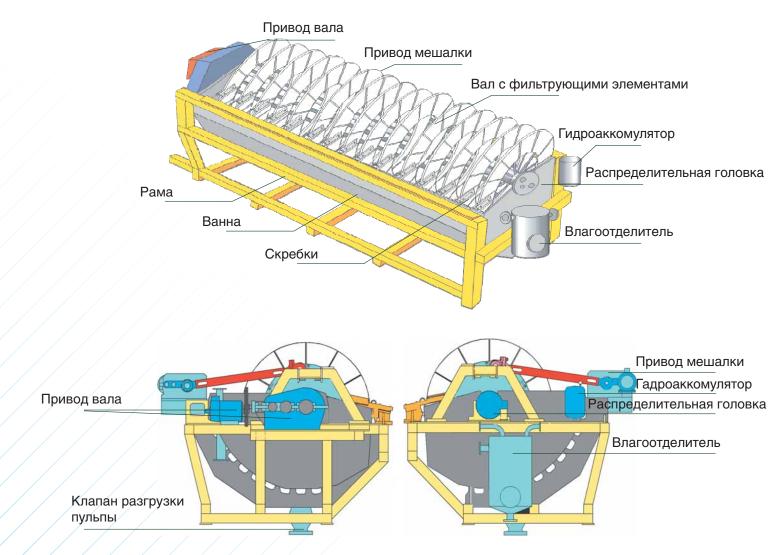
Конструкция фильтра КДФ снабжена системой ультразвуковой и жидкостной (кислотной) очистки керамических фильтрующих элементов, которая обеспечивает наиболее эффективную регенерацию пластин. Ультразвуковая очистка может применяться как на регулярной, так и на периодической основе, в зависимости от условий применения, и может проводиться как отдельно, так и в комбинации с кислотной очисткой.

КОНСТРУКЦИЯ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ ФИЛЬТРОВ КДФ

Постоянные исследования Научно-Технического центра Бакор и работы в области усовершенствования конструкций и узлов фильтрованных установок КДФ позволяют разрабатывать технологии производства нового поколения вакуумных дисковых фильтров.

Наши инновации увеличивают надежность и производительность фильтровальных установок, снижают операционные и эксплуатационные расходы, а также обеспечивают наиболее эффективные технологии фильтрации, соответствующие актуальным потребностям промышленных предприятий. Они позволяют обеспечить простоту сборки, наладки и последующей работы фильтровального оборудования, удобный доступ к его узлам и компонентам в процессе обслуживания.

Высококвалифицированные специалисты разрабатывают наиболее оптимальные режимы регенерации керамических пластин и их ультразвуковой очистки.



Компактная простая конструкция фильтров отличается, низкой металлоемкостью, простотой монтажа, взаимозаменяемостью всех фильтрующих элементов

Запатентованная конструкция вала (барабана) установки, обеспечивает максимальную стабильность работы:

- 100% блокирование зоны образования кека и зоны обезвоживания от попадания воды обратной промывки или фильтрата
- Регулирование вакуума в зоне формирования и обезвоживания кека
- Регулирование давления обратной промывки
- Конструкция ванны и мешалки обеспечивает равномерное перемешивание высокоплотных концентратов.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КДФ

Параметры		КДФ	КДФ	КДФ	КДФ	КДФ
Параметры		0.5	1	3	15	30
Фильтрующая поверхность	M^2	0.5	1	3	15	30
Количество секторов в диске	ШТ.	10	10	12	12	12
Диаметр диска	MM	720	720	1900	~2260	~2260
Габариты:	MM					
длина		975	1275	1800	~3600	~4850
ширина		995	995	2500	~3910	~3910
высота		1280	1280	2800	~3300	~3300
мощность вакуум-насоса		0.75	1.5	1.5	2.2	2.2
Установленная мощность	кВт	1.75	2.7	16	18	20
Масса фильтра	КГ	210	300	1800	8100	11500
Площадь обслуживания	M^2	6	8	17	35	45
Объем пульпы в ванне	M ²	0.1	0.4	1.3	3.8	5.8

Economorpi i		КДФ	КДФ	КДФ	КДФ
Параметры		45	45-1	60	150
Фильтрующая поверхность	M ²	45	45	60	150
Количество секторов в диске	ШТ.	12	12	12	12
Диаметр диска	MM	1900	~2260	~2260	~2260
Габариты:	MM				
длина		7222	~6350	~6950	~7950
ширина		3546	~3910	~3910	~5100
высота		2685	~3300	~3300	~3300
мощность вакуум-насоса		2.2	2.2	6	15
Установленная мощность	кВт	15.2	26.8	34.5	70
Масса фильтра	KF	15360	15050	15950	44200
Площадь обслуживания	M ²	51.1	49.5	53	50.7
Объем пульпы в ванне	М ²	7.4	8	9.5	31

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ КЕРАМИЧЕСКИХ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ:

■ Лабораторный тестовый фильтрующий элемент – 0,03

Показатели	Размеры
Н габаритная высота	192 мм
t толщина	24,3 мм
В - габаритная ширина	165 мм
S площадь фильтрации (Σ 2 сторон)	0,016 m²
Вес Al ₂ O ₃ (со штуцером)	0,97 кг
Bec SiC (со штуцером)	0,87 кг

■ Фильтрующий элемент – 0,5

Показатели	Размеры
Н габаритная высота	260 мм
t толщина	24,3 мм
В - габаритная ширина	215 мм
S площадь фильтрации (Σ 2 сторон)	0,05 м²
Вес Al ₂ O ₃ (со штуцером)	1,64 кг
Вес SiC (со штуцером)	1,5 кг

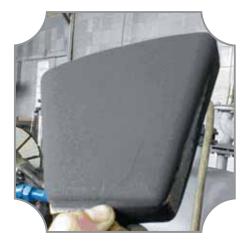
■ Стандартный фильтрующий элемент – 0,25 / 30 мм

Показатели	Размеры
Н габаритная высота	425 мм
t толщина	30 мм
В - габаритная ширина	486 мм
S площадь фильтрации (Σ 2 сторон)	0,25 м²
Вес Al ₂ O ₃ (со штуцером)	9,9 кг
Вес SiC (со штуцером)	8,9 кг

■ Стандартный фильтрующий элемент – 0,25 / 24 мм

Показатели	Размеры
Н габаритная высота	425 мм
t толщина	24,3 мм
В - габаритная ширина	486 мм
S площадь фильтрации (Σ 2 сторон)	0,25 м²
Вес Al ₂ O ₃ (со штуцером)	7,8 kg
Bec SiC (со штуцером)	7,0 kg

Большеразмерный фильтрующий элемент – 0,16

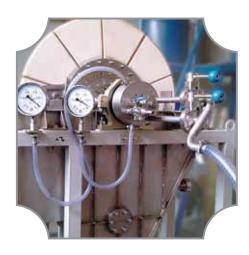

Показатели	Размеры
Н габаритная высота	598 мм
t толщина	35 мм
В - габаритная ширина	573 мм
S площадь фильтрации (Σ 2 сторон)	0,416 m²
Вес Al ₂ O ₃ (со штуцером)	18,6 KF
Bec SiC (со штуцером)	16,7 кг

ТЕСТОВЫЕ И ЛАБОРАТОРНЫЕ УСТАНОВКИ КДФ

Научно-исследовательский отдел, включающий группу высококвалифицированных специалистов, проводит предварительные работы по определению возможности использования установок и подбору элементов для фильтрации конкретных суспензий заказчика.

ЛАБОРАТОРНАЯ УСТАНОВКА КДФ-0,03

Предварительные исследования по фильтруемости пульп проводятся на тестовых лабораторных установках, в лабораторных условиях или непосредственно в цехах предприятия, с использованием КДФ-0,03.



ТЕСТОВАЯ И ПРОМЫШЛЕННАЯ УСТАНОВКА КДФ-0,5

Предварительные исследования по фильтруемости пульп проводятся на тестовых лабораторных установках, в лабораторных условиях или непосредственно в цехах предприятия, с использованием КДФ-0,03. При положительных результатах тестовых испытаний, проводятся лабораторные исследования на опытном фильтре КДФ-0,5 с площадью фильтрования 0,5 м².

Это полноценно действующая промышленная установка, с полным комплексом автоматики и оборудования для регенерации.

НТЦ БАКОР

142171, Москва, Щербинка, ул. Южная, д. 17 Тел./факс: +7 495 502 7868, +7 495 502 7817 www.ntcbakor.ru